Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Front Aging Neurosci ; 16: 1344072, 2024.
Article in English | MEDLINE | ID: mdl-38304741

ABSTRACT

Introduction: Alzheimer's disease (AD) poses an increasing global health challenge and is marked by gradual cognitive deterioration, memory impairment, and neuroinflammation. Innovative therapeutic approaches as non-pharmacological protocol are urgently needed with side effect risk of drugs. Microcurrent therapy, a non-invasive modality involving low-level electrical currents, has emerged as a potential solution to address AD's complex pathogenesis. This study investigates the optimal application of microcurrent therapy as a clinical protocol for AD, utilizing a comprehensive approach that integrates behavioral assessments and neuroinflammation evaluation in a mouse model of dementia. Methods and results: The results reveal that microcurrent therapy holds promise in ameliorating memory impairment and reducing neuroinflammation in AD. Behavioral assessments, including the Novel Object Recognition Test (NOR) and Radial Arm Maze Test (RAM), demonstrated improved cognitive function following microcurrent therapy. Furthermore, microcurrent therapy inhibited expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) in current-treated group. Mechanistic insights suggest that microcurrent therapy may modulate neuroinflammation through the regulation of MAPK signaling pathways. Conclusion: This study emphasizes the prospect of microcurrent therapy as a safe and efficacious non-pharmacological strategy for Alzheimer's disease (AD), providing optimism to the countless individuals impacted by this debilitating ailment. These results contribute to the developments of an innovative clinical protocol for AD and recovery from neurological injury, underscoring the significance of investigating unconventional therapeutic approaches for addressing this complex condition.

2.
Am J Cancer Res ; 13(11): 5626-5640, 2023.
Article in English | MEDLINE | ID: mdl-38058802

ABSTRACT

Innovative approaches have given rise to a method for treating newly diagnosed GBM cancer patients within a span of 4.9 months, resulting in improved median overall survival (OS) and minimal side effects during the phase III clinical trial. This approach is referred to as Tumor Treating Fields (TTFields). The objective of this study is to ascertain the potential of TTFields treatment in sensitizing GBM cancer cells by enhancing TTFields-induced senescence. To achieve this, the research employed a multifaceted methodology that encompassed several elements, including the analysis of SA-ß-gal staining, flow cytometry, Western blotting, morphology assessment, Positron Emission Tomography (PET)/Computed Tomography (CT), immunohistochemical staining, and microassay. Over a period of up to 5 days, the number of cells exhibiting senescence-specific morphology and positive SA-ß-Gal activity progressively increased. These findings indicate that p16, p21, p27 and pRB are pivotal regulators of TTFields-induced senescence through NF-κB activation. The outcomes reveal that TTFields treatment effectively promotes TTFields-induced senescence in GBM cells through a mechanism independent of apoptosis. In conclusion, this research underscores the viability of this treatment approach as a reliable protocol to address the limitations associated with the conventional GBM treatment.

3.
Cell Death Differ ; 30(9): 2151-2166, 2023 09.
Article in English | MEDLINE | ID: mdl-37596441

ABSTRACT

The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.


Subject(s)
Centrosome , Mitosis , Checkpoint Kinase 1 , Phosphorylation , Polo-Like Kinase 1
4.
Small ; 19(50): e2304274, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37626461

ABSTRACT

To achieve the global goal of carbon neutrality, recently, emphasis has been placed on developing green ammonia production method to replace the Haber-Bosch process. Nitrate reduction reaction (NO3 RR) has received considerable attention, especially for electrochemically producing ammonia from nitrate and simultaneously purifying wastewater. This study first demonstrates that the combination of NO3 RR with hydrazine oxidation reaction (HzOR) is an energy efficient green ammonia production method, which overcomes the sluggish water oxidation limitation. Tungsten phosphide (WP) nanowires (NWs) are prepared as cathode NO3 RR electrocatalysts, which exhibit a high Faradaic efficiency in both neutral (≈93%) and alkaline (≈85%) media. Furthermore, they show a high bifunctional activity in anodic reactions and exhibit a low potential 0.024 V for generating a current density of 10 mA cm-2 in HzOR. The overall NO3 RR-HzOR required an impressively low potential of 0.24 V for generating a current density of 10 mA cm-2 ; this potential is much lower than those required for NO3 RR-OER (1.53 V) and NO3 RR-UOR (1.31 V). A self-powered ammonia production system, prepared by assembling an NO3 RR-HzOR with a perovskite solar cell, displays a high ammonia production rate of 1.44 mg cm-2  h-1 . A single PV cell provides enough driving voltage in the PV-EC due to low required potential. This system facilitates unassisted green ammonia synthesis with a low energy consumption and also allows upcycling of wastewater to produce useful fuel.

5.
Int J Mol Sci ; 24(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37629001

ABSTRACT

This study primarily aimed to investigate the combined effects of polydeoxyribonucleotide (PDRN) and extracorporeal shock wave therapy (ESWT) sequences on the regenerative processes in atrophied animal muscles. Thirty male New Zealand rabbits, aged 12 weeks, were divided into five groups: normal saline (Group 1), PDRN (Group 2), ESWT (Group 3), PDRN injection before ESWT (Group 4), and PDRN injection after ESWT (Group 5). After 2 weeks of cast immobilization, the respective treatments were administered to the atrophied calf muscles. Radial ESWT was performed twice weekly. Calf circumference, tibial nerve compound muscle action potential (CMAP), and gastrocnemius (GCM) muscle thickness after 2 weeks of treatment were evaluated. Histological and immunohistochemical staining, as well as Western blot analysis, were conducted 2 weeks post-treatment. Staining intensity and extent were assessed using semi-quantitative scores. Groups 4 and 5 demonstrated significantly greater calf muscle circumference, GCM muscle thickness, tibial nerve CMAP, and GCM muscle fiber cross-sectional area (type I, type II, and total) than the remaining three groups (p < 0.05), while they did not differ significantly in these parameters. Groups 2 and 3 showed higher values for all the mentioned parameters than Group 1 (p < 0.05). Group 4 had the greatest ratio of vascular endothelial growth factor (VEGF) to platelet endothelial cell adhesion molecule-1 (PECAM-1) in the GCM muscle fibers compared to the other four groups (p < 0.05). Western blot analysis revealed significantly higher expression of angiogenesis cytokines in Groups 4 and 5 than in the other groups (p < 0.05). The combination of ESWT and PDRN injection demonstrated superior regenerative efficacy for atrophied calf muscle tissue in rabbit models compared to these techniques alone or saline. In particular, administering ESWT after PDRN injection yielded the most favorable outcomes in specific parameters.


Subject(s)
Extracorporeal Shockwave Therapy , Male , Rabbits , Animals , Vascular Endothelial Growth Factor A , Muscle Fibers, Skeletal , Muscular Atrophy/therapy , Polydeoxyribonucleotides/pharmacology , Polydeoxyribonucleotides/therapeutic use
6.
Exp Ther Med ; 26(2): 363, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37408858

ABSTRACT

Liposarcoma (LPS) is a rare type of soft tissue sarcoma that constitutes 20% of all sarcoma cases in adults. Effective therapeutic protocols for human LPS are not well-defined. Tumor-treating fields (TTFields) are a novel and upcoming field for antitumor therapy. TTFields combined with chemoradiotherapy have proven to be more effective than TTFields combined with radiotherapy or chemotherapy alone. The present study aimed to assess the effectiveness of TTFields in inhibiting cell proliferation and viability for the anticancer treatment of LPS. The present study used TTFields (frequency, 150 kHz; intensity, 1.0 V/cm) to treat two LPS cell lines (94T778 and SW872) and analyzed the antitumor effects. According to trypan blue and MTT assay results, TTFields markedly reduced the viability and proliferation of LPS cell lines along with the formation of colonies in three-dimensional culture. Based on the Transwell chamber assay, TTFields treatment also markedly reduced the migration of LPS cells. Furthermore, as shown by the higher activation of caspase-3 in the Caspase-3 activity assay and the results of the reactive oxygen species (ROS) assay, TTFields increased the formation of ROS in the cells and enhanced the proportion of apoptotic cells. The present study also investigated the inhibitory effect of TTFields in combination with doxorubicin (DOX) on the migratory capacity of tumor cells. The results demonstrated that TTFields treatment synergistically induced the ROS-induced apoptosis of LPS cancer cell lines and inhibited their migratory behavior. In conclusion, the present study demonstrated the potential of TTFields in improving the sensitivity of LPS cancer cells, which may lay the foundation for future clinical trials of this combination treatment strategy.

7.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298502

ABSTRACT

Iron accumulation in the brain accelerates Alzheimer's disease progression. To cure iron toxicity, we assessed the therapeutic effects of noncontact transcranial electric field stimulation to the brain on toxic iron deposits in either the Aß fibril structure or the Aß plaque in a mouse model of Alzheimer's disease (AD) as a pilot study. A capacitive electrode-based alternating electric field (AEF) was applied to a suspension of magnetite (Fe3O4) to measure field-sensitized reactive oxygen species (ROS) generation. The increase in ROS generation compared to the untreated control was both exposure-time and AEF-frequency dependent. The frequency-specific exposure of AEF to 0.7-1.4 V/cm on a magnetite-bound Aß-fibril or a transgenic Alzheimer's disease (AD) mouse model revealed the degradation of the Aß fibril or the removal of the Aß-plaque burden and ferrous magnetite compared to the untreated control. The results of the behavioral tests show an improvement in impaired cognitive function following AEF treatment on the AD mouse model. Tissue clearing and 3D-imaging analysis revealed no induced damage to the neuronal structures of normal brain tissue following AEF treatment. In conclusion, our results suggest that the effective degradation of magnetite-bound amyloid fibrils or plaques in the AD brain by the electro-Fenton effect from electric field-sensitized magnetite offers a potential electroceutical treatment option for AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Mice, Transgenic , Iron/metabolism , Amyloid beta-Peptides/metabolism , Reactive Oxygen Species , Feasibility Studies , Ferrosoferric Oxide , Pilot Projects , Oxidation-Reduction , Disease Models, Animal , Plaque, Amyloid/therapy , Plaque, Amyloid/metabolism
8.
Anim Biosci ; 36(9): 1327-1335, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37170517

ABSTRACT

OBJECTIVE: When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. METHODS: The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. RESULTS: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. CONCLUSION: Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.

9.
Nutrients ; 14(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36235754

ABSTRACT

The physiological or dietary advantages of germinated grains have been the subject of numerous discussions over the past decade. Around 23 million tons of oats are consumed globally, making up a sizeable portion of the global grain market. Oat seedlings contain more protein, beta-glucan, free amino acids, and phenolic compounds than seeds. The progressive neurodegenerative disorder of Alzheimer's is accompanied by worsening memory and cognitive function. A key indicator of this disorder is the unusual buildup of amyloid-beta protein (or Aß) in human brains. In this context, oat seedling extract (OSE) has been identified as a new therapeutic candidate for AD, due to its antioxidant activity and AD-specific mechanism of action. This study directly investigated how OSE affected AD and its impacts by examining the cognitive function and exploring the inflammatory response mechanism. The dried oat seedlings were grounded finely with a grinder, inserted with 50% fermented ethanol 10 times (w/v), and extracted by stirring for 10 h at 45 °C. After filtering the extract by 0.22 um filter, some of it was used for UHPLC analysis. The results indicated that the treatment with OSE protects against Aß25-35-induced cytotoxicity in BV2 cells. Tg-5Xfad AD mice had strong deposition of Aß throughout their brains, while WT mice did not exhibit any such deposition within their brains. A drastic reduction was observed in terms of numbers, as well as the size, of Aß plaques within Tg-5Xfad AD mice exposed to OSE. This study indicated OSE's neuroprotective impacts against neurodegeneration, synaptic dysfunction, and neuroinflammation induced by amyloid-beta. Our results suggest that OSE acts as a neuroprotective agent to combat AD-specific apoptotic cell death, neuroinflammation, amyloid-beta accumulation, as well as synaptic dysfunction in AD mice's brains. Furthermore, the study indicated that OSE treatment affects JNK/ERK/p38 MAPK signaling, with considerable inhibition in p-JNK, p-p38, and p-ERK levels seen in the brain of OSE-treated Tg-5Xfad AD mice.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , beta-Glucans , Alzheimer Disease/metabolism , Amino Acids/therapeutic use , Amyloid beta-Peptides/metabolism , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Avena , Disease Models, Animal , Ethanol , Humans , Mice , Mice, Transgenic , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Seedlings/metabolism , beta-Glucans/therapeutic use , p38 Mitogen-Activated Protein Kinases
10.
J Radiat Res ; 63(6): 817-827, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36253116

ABSTRACT

The primary motivation of this investigative study is trying to find an alternative treatment that can be used to slow down or treat glioblastoma due to the witnessed toxic side effects of the current drugs coupled with limited effectiveness in overall treatment. Consequently, a Chinese plant extract emodin proves to play a critical role in this investigative study since results from the Western blot and the other accompanying assays for anti-cancer effects indicate that it cannot work a lot to suppress cell migration and possible invasion, but rather emodin can be combined with radiation to give desired outcomes. Our result shows that the kind of radiation which acts well with emodin is neutron radiation rather than gamma radiation. Emodin significantly enhanced the radiosensitivity of LN18 and LN428 cells to γ-rays through MTT assay and cell counting. Accordingly, exposure to neutron radiation in the presence of emodin induced apoptotic cell death and autophagic cell death to a significantly higher extent, and suppressed cell migration and invasiveness more robustly. These effects are presumably due to the ability of emodin to amplify the effective dose from neutron radiation more efficiently. Thus, the study below is one such trial towards new interventional discovery and development in relation to glioblastoma treatment.


Subject(s)
Emodin , Emodin/pharmacology , Emodin/therapeutic use
11.
Transl Cancer Res ; 11(8): 2572-2581, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36093516

ABSTRACT

Background: Gold nanoparticles (GNP, AuNPs) have received much attention as a tool to improve the therapeutic index of radiation therapy. This study aimed to evaluate the normal in vitro toxicity of AuNPs at kilovoltage energies on hepatocytes to provide scientific support for using AuNPs with radiotherapy. Methods: Using the same treatment protocol applied to tumor cell lines, hepatocytes were exposed to AuNPs and/or radiation at various time points. Results: The combination of X-ray irradiation and AuNPs did not have any significant effect on cell survival and apoptosis in normal hepatocytes. Furthermore, the combination treatment resulted in no or little change in the level of gamma-H2A histone family member X (γ-H2AX), a marker for DNA double-strand breaks (DSB), nor on the proportion of cells in the G2/M phase. Additionally, interleukin-8 (IL-8) secretion was measured using an enzyme-linked immunosorbent assay (ELISA) to assess its role in tumor progression and angiogenesis. The combination of irradiation and AuNP treatment revealed no significant reduction in hepatocyte viability, proliferation, or secretory capacity compared to cells receiving either treatment alone. According to this study, AuNPs in combination with radiation do have potentially in the treatment of hepatocellular carcinoma (HCC) with no critical cytotoxicity on normal tissue. Conclusions: Therefore, it is postulated that radiation and AuNPs are an effective combination therapy against HCC with no little cytotoxic effects on normal tissue, a hypothesis which warrants further investigation in in vivo, as well as in in vitro.

12.
Transl Cancer Res ; 11(8): 2553-2561, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36093532

ABSTRACT

Background: Tumor-treating fields (TTFields) have been extensively used to treat various cancers as well as glioblastoma multiforme (GBM), owing to their antimitotic effects. Furthermore, sorafenib is also extensively used to treat hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) and is under phase II/III clinical trials for other solid tumors. Hence, this investigation aimed to assess the efficacy of combination therapy with TTFields and sorafenib for colorectal carcinoma (CRC). Methods: Human CRC HCT116 and SW480 cells were subjected to cell viability assay, followed by the assessment of their cell death using fluorescence-activated cell sorting (FACS) analysis. Furthermore, the expression of proteins involved in AKT/STAT3 signaling and apoptosis was assessed via western blotting. Results: Combination treatment inhibited cell proliferation and induced apoptosis via Reactive oxygen species (ROS) generation, evident from caspase-3 cleavage in CRC cells and suppressed the AKT/STAT3 signaling pathway, as evident from downregulation of BCL-2 after post-treatment. The present results indicate that combination treatment with TTFields and sorafenib inactivates AKT/STAT3 signaling pathway, thus altering the expression of BCL-2, thus inducing apoptosis and inhibiting the growth of CRC cells. Conclusions: Thus, combination treatment with TTFields and sorafenib is clinically applicable for treating metastatic CRC, although safety examination in patients with CRC will required to be achieved before this protocol can be implemented clinically for TTFields-sensitizer.

13.
Oncol Lett ; 24(4): 338, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36039063

ABSTRACT

Liver cancer is a common malignancy worldwide, with a poor prognosis and a high recurrence rate despite the available treatment methodologies. Tumor-treating fields (TTFields) have shown good preclinical and clinical results for improving the prognosis of patients with glioblastoma and malignant pleural mesothelioma. However, there is minimal evidence for the effect of TTFields on other cancer types. Thus, the present study aimed to investigate the therapeutic efficacy of TTFields in an in vitro model, and to further elucidate the underlying mechanisms. In the present study, two hepatocellular carcinoma (HCC) cell lines (Hep3B and HepG2) were treated with TTFields (intensity, 1.0 V/cm; frequency, 150 kHz) in order to determine the potential antitumor effects of this approach. TTFields significantly inhibited the proliferation and viability of HCC cell lines, as measured using Trypan blue and MTT assays, as well as colony formation in three-dimensional cultures. The TTFields also significantly inhibited the migration and invasion of HCC cells in Transwell chamber and wound-healing assays. Moreover, TTFields enhanced the production of reactive oxygen species in the cells and increased the proportion of apoptotic cells, as evidenced by increased caspase-3 activity, as well as PARP cleavage in western blotting experiments. All of these effects were increased following the application of TTFields in combination with the multi-kinase inhibitor sorafenib, which demonstrated a synergistic effect. Thus, to the best of our knowledge, these results demonstrate for the first time the potential of TTFields in improving the sensitivity of HCC cells to sorafenib, which may lay the foundation for future clinical trials for this combination treatment strategy.

14.
Am J Cancer Res ; 12(6): 2673-2685, 2022.
Article in English | MEDLINE | ID: mdl-35812042

ABSTRACT

BACKGROUND: Tumor-treating fields (TTFields) have been used singly or with chemoradiation for treating glioblastoma and mesothelioma but not yet for lung cancer. Survival rates in lung cancer remain abysmal despite advances in early diagnosis and targeted therapies. AIMS AND OBJECTIVES: We aimed to investigate the effectiveness of TTFields in inhibiting lung cancer growth and metastasis, as well as the therapeutic effectiveness of TTFields alongside radiation and chemosensitivity-enhancing agents in an in vitro model. METHODS: We generated TTFields yielding 0-800 V sine-wave signals, 0.9 V/cm applied electric field intensity, and 150 kHz frequency. The human lung cancer cell lines A549 and H460 were used in this study. Cell viability, colony formation, cell death detection, and cell invasion assays were performed to assess the therapeutic effectiveness of TTFields; sensitization of lung cancer cells to TTFields by doxorubicin (DOX); and the combined effect of TTFields, DOX, and irradiation (IR). RESULTS: Lung cancer cells showed a nearly 20% decrease in cell viability at 1 V/cm and 150 kHz. In A549 and H460 cells, TTFields increased apoptosis through increased cleaved caspase3, hindered cell migration and invasion, and improved chemosensitivity to DOX. The combination of DOX and TTFields showed better antitumor results than those of each individually. However, the DOX/TTFields/IR combination was most effective in reducing the viability and migration of lung cancer cells. CONCLUSION: TTFields as an adjuvant therapy offers probability for improving lung cancer patient outcomes.

15.
J Radiat Res ; 63(3): 342-353, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35446963

ABSTRACT

Glioblastoma is a deadly cancer tumor in the brain and has a survival rate of about 15 months. Despite the high mortality rate, temozolomide has proven to increase the survival rate of patients when combined with radiotherapy. However, its effects may be limited because some patients develop therapeutic resistance. Curcumin has proven to be a cancer treatment due to its broad anticancer spectrum, high efficiency and low toxic level. Additionally, curcumin significantly enhanced radiation efficacy under high and low Linear Energy Transfer (LET) radiation conditions in vitro. In combination with radiation, curcumin increased the cell population in the sub-G1 phase and the reactive oxygen species (ROS) level, ultimately increasing GBM cellular apoptosis. The radiosensitizing effects of curcumin are much higher in neutron (high LET)-irradiated cell lines than in γ (low LET)-irradiated cell lines. Curcumin plus neutron combination significantly inhibited cell invasion compared with that of single treatment or curcumin combined γ-ray treatment. Curcumin enhances the radiosensitivity of Glioblastoma (GBM), suggesting it may have clinical utility in combination cancer treatment with neutron high-LET radiation.


Subject(s)
Curcumin , Glioblastoma , Apoptosis , Cell Line, Tumor , Curcumin/pharmacology , Glioblastoma/pathology , Humans , Linear Energy Transfer , Radiation Tolerance
16.
Anticancer Res ; 42(4): 1813-1819, 2022 04.
Article in English | MEDLINE | ID: mdl-35346999

ABSTRACT

BACKGROUND/AIM: Colorectal cancer is reported to have the highest mortality rate among human malignancies. Although many research results for the treatment of colorectal cancer have been reported, there is no suitable treatment when resistance has developed. Therefore, it is necessary to develop new therapeutic agents. Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling plays an essential role in cell differentiation, proliferation, and survival. Abnormal activation of the JAK/STAT signaling pathway, by gene mutation or amplification, may induce cancer development, and sustained JAK/STAT activation is involved in chemoresistance. While many therapeutic agents have been developed to treat colon cancer, there remains no drug to overcome resistance to chemotherapies. The purpose of this study was to determine the potential of CJ14939 as a novel JAK inhibitor for the treatment of colorectal cancer. MATERIALS AND METHODS: In this study, cell culture, cell death assay, 3- (4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, colony formation assay, immunoblot analysis and tumor xenograft were applied. RESULTS: CJ14939 induced cell death, and inhibited phosphorylation of JAK1 and STAT3 in colorectal cancer cells. Furthermore, CJ14939 also promoted oxaliplatin-induced cell death, up-regulated expression of cleaved caspase-3, and down-regulated expression of phospho-JAK1 and phospho-STAT3. In vivo, co-treatment with CJ14939 and oxaliplatin notably reduced tumor growth when compared with CJ14939 or oxaliplatin treatment alone. CONCLUSION: This study identifies the important potential of CJ14939 in colorectal cancer treatment and suggests that combining CJ14939 with oxaliplatin might be a novel therapeutic strategy for patients with colorectal cancer.


Subject(s)
Colorectal Neoplasms , Janus Kinase Inhibitors , Animals , Cell Death , Colorectal Neoplasms/drug therapy , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Oxaliplatin/pharmacology , STAT Transcription Factors/metabolism , Signal Transduction/physiology , Xenograft Model Antitumor Assays
17.
Am J Cancer Res ; 12(1): 198-209, 2022.
Article in English | MEDLINE | ID: mdl-35141013

ABSTRACT

The tumor microenvironment (TME) of glioblastoma malforms (GBMs) contains tumor invasiveness factors, microvascular proliferation, migratory cancer stem cells and infiltrative tumor cells, which leads to tumor recurrence in the absence of effective drug delivery in a Blood Brain Barrier (BBB)-intact TME and radiological invisibility. Low-density lipoprotein receptor (LDLR) is abundant in the blood brain barrier and overexpressed in malignant glioma cells. This study aimed to treat the TME with transmitted proton sensitization of LDLR ligand-functionalized gold nanoparticles (ApoB@AuNPs) in an infiltrative F98 glioma rat model. BBB-crossing ApoB@AuNPs were selectively taken up in microvascular endothelial cells proliferation and pericyte invasion, which are therapeutic targets in the glioma TME. Proton sensitization treated the TME and bulk tumor volume with enhanced therapeutic efficacy by 67-75% compared to that with protons alone. Immunohistochemistry demonstrated efficient treatment of endothelial cell proliferation and migratory tumor cells of invasive microvessels in the TME with saving normal tissues. Taken together, these data indicate that the use of LDLR ligand-functionalized gold nanoparticles is a promising strategy to treat infiltrative malignant glioma while overcoming BBB crossing.

18.
J Anim Breed Genet ; 139(3): 281-291, 2022 May.
Article in English | MEDLINE | ID: mdl-34902178

ABSTRACT

The genetic improvement of Hanwoo is dependent on the estimated breeding value (EBV) of pedigree-based Korean proven bull's number, and the genetic evaluation for cows is difficult due to insufficient pedigree and test records. Genomic selection involves utilizing the individual's genotype to estimate the breeding value (BV) and is determined to be an appropriate evaluation method for cows who lack test information. This study used pedigree and genotype to estimate and analyse BV and accuracy of Hanwoo cows in the Gyeongnam area using pedigree best linear unbiased prediction (PBLUP) and genomic best linear unbiased prediction (GBLUP). The test group acquired pedigree and genotype of 919 Hanwoo cows in the Gyeongnam area. The traits used for analysis were carcass weight (CWT), eye muscle areas (EMA), backfat thickness (BFT) and marbling score (MS). PBLUP used Reference group 1 containing the pedigree and phenotype of 919 Hanwoo cows and 545,483 heads to construct the numeric relationship matrix and estimated the EBV and accuracy. GBLUP used Reference group 2 containing the genotype and phenotype of 919 Hanwoo cows and 17,226 heads to construct the genomic relationship matrix and estimated the genomic EBV (GEBV) and accuracy. In the order of CWT, EMA, BFT and MS, the accuracy of PBLUP was 0.488, 0.480, 0.482 and 0.486 while the accuracy of GBLUP was higher with 0.779, 0.758, 0.766 and 0.791. And for 104 cows without relationship coefficient on pedigree to the reference group, the accuracy as PBLUP was estimated to be 0, but for GBLUP, it was possible to estimate the accuracy for all individuals. If GBLUP is applied to cows raised in general farms, the genetic evaluation can be performed even on animals without pedigree and high-accuracy estimation, enabling selection of excellent cows. Accordingly, by securing the genetic diversity of cows, it is expected to increase the profitability of farms by decreasing the inbreeding rate and increasing efficiency of elite calf production.


Subject(s)
Genome , Genomics , Animals , Cattle/genetics , Female , Genomics/methods , Genotype , Male , Models, Genetic , Pedigree , Phenotype , Republic of Korea
19.
Am J Cancer Res ; 11(9): 4582-4594, 2021.
Article in English | MEDLINE | ID: mdl-34659907

ABSTRACT

Few advances in GBM treatment have been made since the initiation of the Stupp trials in 2005. Experimental studies on immunotherapy drugs, molecular inhibitors, radiation dosage escalation and vascular growth factor blockers have all failed to provide satisfactory outcomes. TTFields therapy, on the other hand, have emerged as a viable substitute to therapies like radiation in GBM patients having a highly immunosuppressive tumor microenvironment. To enhance the biofunctional impacts, we explored the combination events with TTFields and proton treatment in this study. We conducted a cell viability test, a cell death detection evaluation, a ROS analysis, a three-dimensional (3D) culture system, and a migration assay. The combination of proton radiation and TTFields therapy laid a substantial anticancer impact on the F98 and U373 as compared to the consequences of either of these therapies used separately. The combination proton beam therapy used by TTFields was very successful in curbing GBM from migrating. GBM cell metastasis is restricted by TTFields combined proton by downregulating the MAPK, NF-κB, and PI3K/AKT indicating pathways, caused by reduced EMT marker expression. These findings furnish biological proof for the molecular grounds of TTFields in combination with proton used for GBM therapy.

20.
Cancers (Basel) ; 13(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34680381

ABSTRACT

High linear energy transfer (LET) radiation, such as neutron radiation, is considered more effective for the treatment of cancer than low LET radiation, such as X-rays. We previously reported that X-ray irradiation induced endothelial-to-mesenchymal transition (EndMT) and profibrotic changes, which contributed to the radioresistance of tumors. However, this effect was attenuated in tumors of endothelial-specific Trp53-knockout mice. Herein, we report that compared to X-ray irradiation, neutron radiation therapy reduced collagen deposition and suppressed EndMT in tumors. In addition to the fewer fibrotic changes, more cluster of differentiation (CD8)-positive cytotoxic T cells were observed in neutron-irradiated regrowing tumors than in X-ray-irradiated tumors. Furthermore, lower programmed death-ligand 1 (PD-L1) expression was noted in the former. Endothelial-specific Trp53 deletion suppressed fibrotic changes within the tumor environment following both X-ray and neutron radiation therapy. In particular, the upregulation in PD-L1 expression after X-ray radiation therapy was significantly dampened. Our findings suggest that compared to low LET radiation therapy, high LET radiation therapy can efficiently suppress profibrotic changes and enhance the anti-tumor immune response, resulting in delayed tumor regrowth.

SELECTION OF CITATIONS
SEARCH DETAIL
...